

SOFTWARE SERVICES LIFECYCLE PRIMER
CONTEXT SURVEY & RELATED WORK

Robert F. MacInnis, Ph.D.
June 2017

AetherWorks
501 Fifth Avenue

New York, NY 10017

E: info@activeaether.com

1

1 INTRODUCTION
This document begins by establishing a concrete vocabulary for the discussion of Web Services. It defines

the actors, artifacts, activities, and objectives of each stage in the software service lifecycle and uses these

terms to introduce the concepts, roles and standards of Web Services. It continues with a discussion of each

stage in the Web Service lifecycle and finishes with a comprehensive survey of work addressing

shortcomings of the traditional Web Services model.

2 SOFTWARE SERVICE LIFECYCLE
The software service lifecycle may be simplified into three macro stages of design & development,

deployment, and management, each of which has multiple sub-stages [1]. Authors ascribe various names to

these stages and provide inconsistent groupings of their sub-stages and tasks. The following sections

address this ambiguity by defining a common vocabulary and a concrete set of lifecycle stages which will

guide the description and discussion of work presented in this document.

2.1 Terms

The terminology of Web Services is insufficient for discussing work which addresses the shortcoming of the

traditional Web Services interaction model. This section begins by introducing the broader terminology of

component-based distributed systems and then proceeds to the actors, actions and objectives of each macro

lifecycle stage. Later, these definitions and descriptions will be used to describe the lifecycle activities of

Web Services, followed by work which addresses shortcoming of the traditional Web Services interaction

model.

This document adopts the widely-used terminology of the Object Management Group (OMG) [2]

specifications. The following definitions represent terms commonly used to describe distributed software

systems together with a sub-set of OMG deployment terminology described in [3].

 Artifact: A physical piece of information that is used or produced by a deployment process.

Examples of artifacts include models, source files, scripts, and binary executable files. An artifact

may constitute the implementation of a deployable component.

 Capability: A feature offered by a component implementation.

 Component: A modular part of a system that encapsulates its contents and whose manifestation is

replaceable within its environment.

 Domain: A target environment composed of independent nodes and resources.

2

 Installation: The act of taking a published software package and bringing it into a repository.

 Interface: A named set of operations that characterize the behavior of an element.

 Implementation Artifact: An artifact used or produced as a result of an implementation (usually

“executable code”).

 Launch: The process of instantiating components on nodes in the target environment according to a

deployment plan.

 Metadata: Information that characterizes data.

 Node: A run-time computational resource which generally has at least memory and often processing

capability.

 Package: An implementation, or set of interchangeable implementations, contained in a set of

artifacts and compiled code modules.

 Repository: A facility for storing metadata, and implementations.

 Requirement: A feature requested by a component implementation. Monolithic implementation

requirements must be satisfied by node resources.

2.2 Lifecycle Stages

The following three sections introduce each stage and sub-stage of the software service lifecycle. These

lifecycle stages consume portions of the generic lifecycle activities common amongst software services first

characterized in [4] and later specified by the OMG in [3].

2.3 Design & Development

The design & development stage is composed of three sub-stages: Specification, Implementation, and

Publication. As shown in Fig. 1, the completion of these stages yields an installable package that includes the

code and metadata describing the software component. The design process begins with a Specifier actor

defining an interface which describes the behavior of the component. This interface is called a

ComponentInterfaceDescription and is passed to the actor responsible for implementation.

3

Repository

Administrator(s)

Repository

Administrator(s)
Specifier Implementer

Repository

Administrator(s)

Sends

Distributes

Packager

Development

ComponentInterfaceDescription

Sends

Implements Interface &
Describes Implementation

 Implementation Artifact
 ComponentImplementationDescription

 ComponentInterfaceDescription

Check Implementations for
Compliance with Interface

Package Implementations,
Meta-Data, & Package Description

Package
Store

Repository

Manager

x

x

x

Fig. 1 The actors and actions of the Design & Development lifecycle stage.

The development process involves the Implementer actor writing the business logic of the component by

creating an implementation artifact which implements the ComponentInterfaceDescription. This sub-stage

can be completed by a Developer, who writes a monolithic implementation, or an Assembler, who uses

existing components as building blocks. This sub-stage yields an implementation artifact which serves as the

code module of the package.

The implementing actor must also describe the implementation with a

ComponentImplementationDescription. An Assembler creates a ComponentAssemblyDescription which

describes the component assembly in terms of its sub-components. A Developer creates both a

MonolithicImplementationDescription describing the component implementation, as well as an

ImplementationArtifactDescription describing the component’s requirements of the target environment.

These descriptions are combined with the original ComponentInterfaceDescription and serve as metadata of

the package.

Packaging is the final step in the development process and is carried out by the Packager actor. The

Packager begins by combining the implementations with their descriptor documents, ensuring that the

component implementations conform to the component interface, and describing the package as a whole

using a ComponentPackageDescription. The combined artifacts and compiled code modules comprise the

final package which is ready for installation.

4

2.3.1 Installation & Configuration

The Repository Administrator actor is responsible for installing component packages – that is, storing them

into a repository which is accessible to the entity responsible for deployment. The Repository Administrator

is also responsible for setting and updating package configurations. Once a component package is created by

the Packager it is distributed to Repository Administrators for installation and configuration.

Repository Administrators access repositories through a RepositoryManager interface which provides

operations for installing, configuring, retrieving and removing component packages. While installation

makes packages available for deployment, it does not involve moving them to the machines on which the

components will be run. This task will be performed later during the ‘Preparation’ process of the

Deployment lifecycle stage.

2.4 Deployment

Software deployment may be defined to be the process between the acquisition and execution of software

[5]. Once a software component has been developed, packaged and installed, it is ready to be deployed. The

deployment process consists of three steps: planning, preparation, and launch. Planning is carried out by the

Planner actor and involves creating a DeploymentPlan dictating how and where software will be deployed.

Preparation and launch are carried out by the Executor actor and involve executing the DeploymentPlan,

preparing the target environment for launch, and orchestrating the ‘activation’ of each component in the

deployment.

The following sections begin by defining the features and traits of target environments and the actors

responsible for their administration. The Deployment sub-stages of planning, preparation, and launch are

detailed next, followed by an overview of the techniques used to execute a DeploymentPlan.

2.4.1 Target Environments

Target environments – or ‘Domains’ – consist of a distributed system infrastructure comprised of nodes on

which the software will ultimately run [3]. Target environments are administered by a Domain

Administrator actor who describes the environment in terms of its nodes and shared resources. Each

individual node in the domain is defined by its own resources – such as processing power, memory, and

operating system – and domains may consist of nodes with varying resources. Nodes are managed by a

NodeManager which is responsible for instantiating components on the node.

5

When the DeploymentPlan is executed in the following sub-stages, the deploying process does not control

the target nodes directly. Instead, it interacts with them through their NodeManager interface, allowing for

the software supporting component execution on the node to be functionally decoupled from the details of

the deployment process as a whole. This separation allows a target environment to support heterogeneous

nodes and component implementations without changing the implementation of the deployment system.

2.4.2 Planning

The Planner actor is responsible for deciding how and where software will be deployed. The decision

making process involves matching software requirements with target environment resources and creating a

DeploymentPlan to guide the ‘Preparation’ sub-stage. A valid DeploymentPlan describes a deployment of an

application using concrete implementations that match requested selection properties, and an assignment

of these implementations to nodes so that node resources match or exceed the requirements of component

instances that are deployed on them [3]. The activities of the planning process are shown in Fig. 2.

RepositoryManagerRepositoryManagerPlanner RepositoryManager(s)TargetManager

Planning

Get Domain Info

Recursively Resolve Monolithic Implementations
 for each Component in the Application

Domain Info

Generate DeploymentPlans

Select Valid DeploymentPlan

Fig. 2 The processes of the Planning sub-stage, including information retrieval, generation of candidate

DeploymentPlans, and selection of a valid DeploymentPlan to guide application Preparation and Launch.

The Planner begins the planning process by retrieving information about the target environment from a

TargetManager controlled by the Domain Administrator. The Planner then contacts one of potentially many

RepositoryManagers to find a package and ComponentPackageDescription for the application to be

6

deployed. If the package contains an implementation which is an assembly then the Planner must retrieve

packages for each sub-component in the assembly until it has monolithic implementation artifacts for all

components in the application.

The next stage in the planning process involves generating candidate DeploymentPlans by matching node

resources to implementation requirements, then selecting a plan for use. Deciding which plan to use, and

when the choice is made, depends largely on the resource behavior of the target execution environment. In

environments with static resource availability, DeploymentPlans may be pre-generated, reducing the time

needed for deployment. Environments with dynamic resource availability will need to generate and select

plans on demand in order to ensure that the DeploymentPlan is valid.

The process of generating and selecting DeploymentPlans is implementation-specific and can be one of the

most complex lifecycle tasks. Generating all possible configurations for a low-complexity deployment on

even a small set of nodes can yield an astronomical number of equally valid DeploymentPlans. Further, the

process and criteria for comparing and ranking DeploymentPlans can be very complex and time-consuming.

Choosing the right approach to planning can have a large impact on the timeliness and effectiveness of the

deployment process; the various approaches to planning and their implications for deployment are

discussed further in section 2.4.5 ‘Deployment Techniques’.

2.4.3 Preparation

A valid DeploymentPlan is used by the Executor actor during the Preparation stage in order to prepare the

target environment for software launch. To prepare the deployment, the Executor sends a DeploymentPlan

to the ExecutionManager who is responsible for managing the execution of the application into the domain.

The Preparation process, shown in Fig. 3, begins with the creation of ApplicationManagers at both the

domain and individual node levels which are capable of enacting a particular DeploymentPlan, possibly

multiple times. The ExecutionManager first creates a domain-level manager called a

DomainApplicationManager. For each node in the DeploymentPlan the DomainApplicationManager creates a

partial DeploymentPlan representing the single node’s deployment responsibilities. Each node’s

NodeManager is sent their partial DeploymentPlan and creates a NodeApplicationManager capable of

enacting it on the node. These domain- and node-level managers will be used later during the ‘Launch’

process to orchestrate and enact the execution of the application.

7

Executor

DomainApplicationManager

ExecutionManager

NodeApplicationManager

Prepare

Creates

NodeManager

Prepare

Creates

∀ NodeManager

in DeploymentPlan

Preparation

Fig. 3 The Executor is responsible for preparing the target environment for application launch.

As the semantics of the Preparation process are undefined, this phase can be a source of features which

differentiate deployment system implementations. While typical Preparation tasks include retrieving

component packages from a RepositoryManager and moving them to the nodes where they will be executed,

the coordination and timing of these and various other tasks can be tailored to exhibit vastly different

behavior. Synergies with other Deployment sub-tasks can also be realized during Preparation, affecting

exhibited behavior even further. Pre-loading machines with artifacts, for example, may increase launch

speed but will also reduce available resources. The Preparation phrase could be intelligently coordinated

with the Planning phase, however, by using pre-generated DeploymentPlans to selectively pre-load artifacts,

reducing the original scheme’s resource consumption while retaining the gained launch speed.

The Preparation process is finished when the target environment is prepared for launch according to the

implementation-specific criteria of the deployment system. The stage is signaled as complete by the

ExecutionManager returning the DomainApplicationManager reference to the Executor. Once returned, the

Executor can use the launch operations of the DomainApplicationManager to instantiate the application and

conclude deployment.

2.4.4 Launch

The Executor uses the DomainApplicationManager produced by the Preparation stage to finalize the

software deployment process during the Launch lifecycle stage. A successful launch brings the application

into an executing state and results in an object that satisfies the ComponentInterfaceDescription described

by the Specifier in the Design & Development stage.

The Executor launches an application in two separate steps called ‘start launch’, shown in Fig. 4, and ‘finish

launch’, shown in Fig. 5. The process begins with the Executor calling a ‘start launch’ operation on the

8

DomainApplicationManager which creates a DomainApplication representing a single instance of the

deployed application. This DomainApplication is responsible for enacting the DeploymentPlan by calling the

‘start launch’ operation of the NodeApplicationManager on each node of the deployment. The ‘start launch’

operation signals each NodeApplicationManager to instantiate a NodeApplication representing a single

instance of the node-level partial deployment of the application.

Executor

DomainApplication

DomainApplicationManager

NodeApplication

Start Launch

Creates

NodeApplicationManager

Start Launch

Creates

∀ NodeApplicationManager

in DeploymentPlan

External Port

ReferencesAll External
Port ReferencesDomainApplication

 and Port Refs

Start Launch

Fig. 4 The Launch stage is initiated through a series of ‘start launch’ calls resulting in the creation of domain- and node-level

component deployments.

The NodeApplication can carry out component- and node-specific actions such as loading software into

memory or opening ports in preparation for use – after which the application is deemed to have been

‘executed’ but not yet ‘started’. Once each NodeApplication is ready to start it returns the

DomainApplication a list of the external ports provided by newly instantiated application components on

the node. The DomainApplication waits until all nodes are ready to start before returning the

NodeApplication port references to the DomainApplicationManager. The DomainApplication reference and

the port list are both returned to the Executor who will use them during the ‘finish launch’ step.

9

Executor DomainApplication NodeApplication

Finish Launch

Finish Launch

∀ NodeApplication

in Deployment

Start

∀ NodeApplication in Deployment

Finish Launch

Fig. 5 The Deployment process is completed by calls to ‘finish launch’ on each deployed component; the timing and order of

their ‘activation’ is controlled by the Executor issuing explicit commands to ‘start’.

The Executor finishes deployment by calling the DomainApplication’s ‘finish launch’ operation with the list

of external ports. The DomainApplication coordinates the dissemination of the port references, calling

‘finish launch’ on each NodeApplication in the deployment and sending them the list of external ports so that

they can communicate with other components in the deployment.

Deployment is concluded by the Executor sending each NodeApplication a command to ‘start’. At this point

the entire deployed application is deemed to be ‘started’ and the launch stage is complete; the application

has been deployed.

2.4.5 Deployment Techniques

While a successful deployment always results in the instantiation of one or more objects that satisfies their

ComponentInterfaceDescription, there are a great variety of techniques used to carry out the individual

deployment tasks. All of the roles in Deployment can be carried out by different entities and through

different means, such as manually by a system administrator or automatically by a computer-based

deployment system. The ability of an application to adapt to changes in the target environment – such as

rising usage levels or node failure – is largely dictated by the techniques used to develop and deploy the

application.

The techniques utilized for deployment can be categorized as manual-, script-, language-, or model-based,

and are selected based on system scale, complexity, and the expectation of change. The effectiveness of the

chosen approach is a function of its suitability to the deployment environment, the availability of

10

management and monitoring facilities (if any), the skill of the developers, and a willingness to invest time

and resources [6].

Using manual deployment, the Planner and Executor roles of the Deployment lifecycle stage are assumed by

a person (such as a system administrator) who is responsible for performing all of the tasks by hand. The

individual must acquire the software from a repository, resolve all component package references, gather

and analyze target environment resources, then manually prepare and execute a DeploymentPlan. This

approach is practical for testing individual components – monolithic implementations in particular – but is

clearly unsuitable to any but the smallest and least complex deployments.

Executors may introduce automation into the process of executing a DeploymentPlan through the use of

shell scripts. By formalizing the manual deployment tasks and chaining them together into a programmatic

deployment script, individuals may repeatedly execute a single DeploymentPlan. Writing deployment

scripts requires a larger initial investment of time during the development phase, but for low-complexity

systems and highly homogeneous target environments it can provide a cheap means of performing large-

scale deployments.

Manual- and script-based techniques are useful for the deployment of simple applications either singularly

(by hand) or potentially multiple times (with shell scripts). When it is necessary to express highly complex

and inter-dependent deployments, however, these approaches become limiting and other techniques must

be considered.

In language-based deployment, constructs are provided in the programming languages which can be used to

specify complex interdependencies between components in a distributed system. Frameworks such as

SmartFrog [7] and eFlow [8] use language-based constructs to define the static and dynamic bindings

between application components, which can then be combined with executable code in the same

implementation (combining the Developer and Assembler roles).

Using a language-based deployment technique requires the Implementer to learn and understand the

complexities of the language, but once implemented the remainder of the application deployment process

can be fully automated. A deployment engine can first assume the role of Planner, generating and selecting

valid DeploymentPlans for target environments with both static and dynamic resource availability. It can

also perform the preparation and launch roles of the Executor, preparing the target environment for

11

execution and coordinating launch according to the plan. Further, by analyzing the inter-component

dependencies specified by the implementation artifact (before a specific DeploymentPlan is developed),

change-management systems such as [8] can detect component failure and automatically reconfigure the

deployed system – an activity detailed further in section 2.5 ‘Management’.

Model-based techniques take a higher-level approach by describing the business functionality and behavior

of an application separately from the technology-specific code that implements it [9]. Applications are

described as high-level models representing valid deployment configurations together with a set of

transformation rules. By statically specifying all of the valid deployment configurations ahead of time, the

use of models reduces the effort required during the Planning stage of Deployment. The generation of

DeploymentPlans only involves matching requirements to resources, after which the Planner can decide

which configuration to choose. Model-based approaches from IBM [10] and Radia [11] (absorbed as part of

HP OpenView Application Manager [12]) allow developers to use desired-state modeling to define the ideal

state of the system with regard to some set of constraints. These constraints guide the selection of an

optimal DeploymentPlan for both the initial system deployment and any subsequent reconfigurations due to

changes in the target environment.

Application deployment using models requires a comparatively large application of development effort

before the actual business logic of the application can be written, and sophisticated model execution engines

are necessary in order to leverage this effort. However, once the system is modeled and the required

components implemented, all monitoring, management and change-enactment can be taken care of

autonomically and intervention by the Executor or DomainAdministrator should be limited unless the

system goals or requirements change.

2.4.5.1 Comparing Deployment Approaches

Each of the preceding deployment approaches has its strengths and weaknesses and no single approach is

appropriate for all scenarios. The choice of approach depends primarily on the target deployment

environment and the amount of time invested during Development in order to save time adapting to change

after Deployment. The burden of selecting an approach rests heavily on the Specifier of the application,

while the repercussions for selecting the wrong approach are felt by the Executor, the

DomainAdministrator, and the users of the application. Foreknowledge of the scale, complexity, and

anticipated frequency of change in the system are required in order to make an informed decision. A

12

quantitative evaluation of the preceding deployment approaches is presented in [13] and a qualitative

comparison is presented in [4].

2.5 Management

The W3C defines management as “a set of capabilities for discovering the existence, availability, health, and

usage — as well as the control and configuration — of manageable elements, where these elements are

defined as services, descriptions, agents of the service architecture, and roles undertaken in the

architecture” [14]. This definition identifies the two requirements of management: information about a

system, and the tools to enact change in the system. A functioning management system can gather

information about manageable elements, analyze and derive meaning from this information, and change the

system to better address a set of pre-defined management goals.

Although one may think of management as only happening at one stage in the lifecycle – the Management

stage – it is in fact an important concept at each stage [1]. As identified in [13] the choice of application

deployment technique is directly linked to a.) the effort required before deployment, and b.) the ease of

managing system changes after deployment. A model-based approach, for example, requires a significant

application of developer effort before the application can be made available. It requires a sophisticated

Planner implementation and a thoughtful specification of the acceptable range of operational parameters

(such as system response time). This additional up-front effort and complexity, however, can greatly reduce

the amount of time spent reacting to change: when the operational parameters leave the acceptable bounds,

the current state of the system can be used by the same Planner actor to create a DeploymentPlan suitable

for the current conditions of the target environment, possibly utilizing existing deployed components. This

plan can then be executed (by the Executor) after which monitoring of the operational parameters can

recommence.

2.5.1 Autonomic Management

A common scenario for the management of a distributed system involves one or more system

administrators actively monitoring the pre-defined measure of ‘health’ in a deployed application, identifying

when something has gone wrong, devising a plan to bring the system into a healthy state, and executing that

plan. This process can be termed ‘manual troubleshooting’ and is directly linked to the ‘manual deployment’

tasks identified in the previous section.

In a closed-world view it is conceivable that, up to a certain size and complexity, a complex software system

may be effectively managed by a set of humans. Beyond a point this is unrealistic, and it becomes necessary

13

to employ a system which can make decisions in lieu of human guidance. This type of management is called

‘autonomic management’ and is part of a broader field called ‘autonomic computing’ [15] [16].

The term autonomic computing applies to a system that can monitor itself and adjust to changing demands

[17]. There are four distinct characteristics of an autonomic computing system:

 Self-configuring

 Self-healing

 Self-optimizing

 Self-protecting

The goal of autonomic computing is the design and development of systems which are able to run

themselves with little to no human intervention. In the context of autonomic management, these goals are

achieved through a formalization of the above ‘manual troubleshooting’ steps into what is termed the

‘autonomic control loop’. Fig. 6 shows the four stages in the autonomic control loop: monitor, analyze, plan,

and execute.

Managed Resource

Managed Resource Touchpoint

Monitor

Analyze Plan

Execute

Knowledge

Autonomic Manager

Sensors Effectors

Fig. 6 The Autonomic Control Loop [25].

14

The monitoring and execution stages of the autonomic control loop require suitable sensors and effectors

for each resource being managed – in other words, there must be ways to derive information about and

exert control over manageable resources, where a manageable resource is a target environment,

application, application component, client using the application, or an actor in the architecture [14]. In a

distributed management architecture, the sensors and effectors linked to the manageable resource through

a ‘managed resource touchpoint’, as shown in Fig. 6, may also be linked to a ‘probe’ which remotely exposes

their functionality for external examination and invocation.

The two most common distributed monitoring models are called the ‘proxy’ model and the ‘agent’ model. In

the proxy model, shown in Fig. 7, requests to an application are routed through an intermediary who

records usage and performance statistics using a ‘collector’. This intermediary can be linked to a single

application (‘Proxy 1’ in Fig. 7) or can serve as the proxy for a number of deployed applications (‘Proxy 2’ in

Fig. 7). From an architectural perspective, the proxy model is vulnerable to a single point of failure if there is

no infrastructure in place to cluster the proxies [1]. In the agent model, shown in Fig. 8, statistics are

collected by ‘collector’ software installed at each node in the target environment and information is

recorded for all components deployed on the individual node. The agent model removes the central point of

failure inherent to the proxy model, but running extra software on the same nodes as deployed application

components may have an unpredictable impact on their performance.

Client 1

Client 2

Proxy 1

Proxy 2

App 1

App 2

App 3

App 1

App 2

App 3

App 1

App 2

App 3

Collector

Collector

Proxy Model for Data Collection

Fig. 7 The proxy model for collecting data about managed elements.

After information is collected it must be transferred to a manager for analysis. This transfer can be initiated

by the collector (called reporting or ‘push’) or by a manager (called polling or ‘pull’). Polling requires a

15

managing entity to periodically interact with the collector via an externally exposed interface on the node

(i.e. probes). Reporting requires the collector to periodically contact one or more managing entities at a

well-known location. The choice of approach has implications for scalability, reliability, and bandwidth

consumption. It is argued in [19] that the reporting approach is better suited to large distributed systems as

it conserves bandwidth and CPU time on the management systems.

Agent Model for Data Collection

Client 1

Client 2

App 1

App 2

App 3

App 1

App 2

App 3

Collector

Collector

Collector

Fig. 8 The agent model for collecting data about managed elements.

Once autonomic management is introduced into a system it can be difficult to identify where the

management chain ends as the introduction of each new management entity also introduces a new entity to

be managed. Further, having both a deployed application and a peered set of deployed managers can be a

waste of resources if the application is not being used, leading to situations where the cost of management

overshadows the cost of running an application. The careful design of management architectures and the

interactions between managers and managed resources is vital if system management is to be effective.

16

REFERENCES

[1]Sun Microsystems. (2003). Web services life cycle: Managing enterprise web services.
[http://www.sun.com/software/whitepapers/webservices/wp_mngwebsvcs.pdf]2008).

[2] Object Management Group. [http://www.omg.org/].

[3] Object Management Group, "Deployment and configuration of component-based distributed applications
specification - version 4.0 - OMG documents formal/06-04-02," April 2006. 2006.

[4] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. v. D. Hoek and A. L. Wolf, "A characterization
framework for software deployment technologies," Department of Computer Science, University of
Colorado, Boulder, Colorado, April 1998.

[5] A. Dearle, "Software deployment, past, present and future," in International Conference on Software
Engineering, 2007, pp. 269-284.

[6] T. Vanish, M. Dejan, W. Qinyi, P. Calton, Y. Wenchang and J. Gueyoung, "Approaches for Service
Deployment," IEEE Internet Computing, vol. 9, pp. 70-80, 2005.

[7] P. Goldsack, J. Guijarro, A. Lain, G. Mecheneau, P. Murray and P. Toft, "SmartFrog: Configuration and
automatic ignition of distributed applications," in HP OpenView University Association (OVUA), 2003.

[8] F. Casati, S. Ilnicki, L. J. Jin, V. Krishnamoorthy and M. C. Shan, "Adaptive and dynamic service
composition in eFlow," Advanced Information Systems Engineering, vol. 1789, pp. 13-31, 2000.

[9] Object Management Group. (2002). Model driven architecture. [http://www.omg.org/mda].

[10] T. Eilam, M. Kalantar, A. Konstantinou and G. Pacifici, "Model-based automation of service deployment
in a constrained environment," IBM, Tech. Rep. RC23382, 2004. REFERENCES

[11] NovaDigm. Radia. [http://www.novadigm.com/].

[12] Hewlett Packard (2008). HP OpenView application manager using radia.
[http://www.openview.hp.com/products/radia_appm/ds/radia_appm_ds.pdf].

[13] T. Vanish, W. Qinyi, P. Calton, Y. Wenchang, J. Gueyoung and M. Dejan, "Comparison of approaches to
service deployment," in Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems, 2005, .

[14] W3C. (2002). Web services management concern. [http://www.w3c.org/].

[15] J. O. Kephart and D. M. Chess, "The Vision of Autonomic Computing," IEEE Computer, vol. 36, pp. 41-50,
2003.

[16] IBM, "Autonomic computing: IBM's perspective on the state of information technology," IBM, 2002.

[17] IBM. (2008). Autonomic computing @ developerWorks: Self-managing autonomic technology.
[http://www.ibm.com/developerworks/autonomic/]2008).

17

[18] IBM. (2006, June 2006). An architectural blueprint for autonomic computing. IBM. [http://www-
01.ibm.com/software/tivoli/autonomic/].

[19] J. Martin-Flatin, "Push vs. pull in web-based network management," Eidgenössische Technische
Hochschule Lausanne, Lausanne, Switzerland, Tech. Rep. SSC/1998/022, 1998.

